Positive Recurrence of Piecewise Ornstein–uhlenbeck Processes and Common Quadratic Lyapunov Functions1 by A. B. Dieker
نویسندگان
چکیده
We study the positive recurrence of piecewise Ornstein–Uhlenbeck (OU) diffusion processes, which arise from many-server queueing systems with phase-type service requirements. These diffusion processes exhibit different behavior in two regions of the state space, corresponding to “overload” (service demand exceeds capacity) and “underload” (service capacity exceeds demand). The two regimes cause standard techniques for proving positive recurrence to fail. Using and extending the framework of common quadratic Lyapunov functions from the theory of control, we construct Lyapunov functions for the diffusion approximations corresponding to systems with and without abandonment. With these Lyapunov functions, we prove that piecewise OU processes have a unique stationary distribution.
منابع مشابه
Nonnegativity of solutions to the basic adjoint relationship for some diffusion processes
For a multi-dimensional diffusion process, an important problem is whether the associated basic adjoint relationship (BAR) uniquely characterizes the stationary distribution of the diffusion process. A key step in this characterization is an open problem that any solution to BAR does not change sign. This note describes the open problem precisely in the context of two classes of diffusion proce...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملA Statistical Study of two Diffusion Processes on Torus and Their Applications
Diffusion Processes such as Brownian motions and Ornstein-Uhlenbeck processes are the classes of stochastic processes that have been investigated by researchers in various disciplines including biological sciences. It is usually assumed that the outcomes of these processes are laid on the Euclidean spaces. However, some data in physical, chemical and biological phenomena indicate that they cann...
متن کاملMultivariate Generalized Ornstein-Uhlenbeck Processes
De Haan and Karandikar [12] introduced generalized Ornstein–Uhlenbeck processes as one-dimensional processes (Vt)t≥0 which are basically characterized by the fact that for each h > 0 the equidistantly sampled process (Vnh)n∈N0 satisfies the random recurrence equation Vnh = A(n−1)h,nhV(n−1)h + B(n−1)h,nh, n ∈ N, where (A(n−1)h,nh, B(n−1)h,nh)n∈N is an i.i.d. sequence with positive A0,h for each ...
متن کاملExponential Ergodicity and β-Mixing Property for Generalized Ornstein-Uhlenbeck Processes
The generalized Ornstein-Uhlenbeck process is derived from a bivariate Lévy process and is suggested as a continuous time version of a stochastic recurrence equation [1]. In this paper we consider the generalized Ornstein-Uhlenbeck process and provide sufficient conditions under which the process is exponentially ergodic and hence holds the exponentially β-mixing property. Our results can cover...
متن کامل